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ABSTRACT. Among the important topics of statistics is to evaluate a proper correlation 

coefficient with fuzzy data, especially when the data illustrate uncertain, inconsistent and 

incomplete type. Generally, we use Pearson’s Correlation Coefficient to measure the 

correlation between data with real values. However, when the data are composed of fuzzy 

interval values, it is not feasible to use such a classical approach to determine the 

correlation coefficient. This study proposes the computation of fuzzy correlation 

coefficient with fuzzy interval data. Empirical studies are employed to explain the 

application for evaluating fuzzy correlation. More related practical phenomena can be 

explained using the application of fuzzy correlation. 

 

Keywords: Fuzzy Correlation; Fuzzy Interval Data; Evaluation; Air Pollution; 

Transportation Engineering. 

 

1. Introduction. In classical statistics, the two-valued logic will be reflected. Investigating 

the phenomena of nature, socials or economics, fuzzy logic should be applied to account for 

the full range of possible values. Since Zadeh (1965) developed fuzzy set theory, its 

applications have been extended to traditional statistical inferences and methods in social or 

engineering or economics, including medical diagnosis or stock investment systems. For 

example, a continuing series of studies displayed approximate reasoning methods for 

econometrics (Lowen, 1990; Ruspini,1991;Dubois & Parde ,1991) and a fuzzy time series 

model to overcome the bias of stock markets was developed (Wu & Hsu, 2002). 

In traditional statistical theory, the observations should be observated under 

probability distribution. In practice, the observations are sometimes explained by linguistic 

terms such as "Very important," "Important," "Normal," "Unimportant," "Very 

unimportant”, or "Maximum value and Minimum value", are only approximately known, 

rather than equating with randomness. Measuring the correlation coefficient between two 

variables including fuzziness is a challenge to the classical statistical theory. A lot of studies 

which investagate the topic of the fuzzy correlation analysis and its application in the social 

or economic science fields (Bustince and Burillo, 1995; Yu, 1993; Liu and Kao, 2002; 

Hong, 2006). Such as, Hong and Hwang (1995) and Yu (1993) define a correlation formula 
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to measure the interrelation of intuitionist fuzzy sets. However, the range of their defined 

correlation is from 0 to 1, which contradicts with the conventional awareness of correlation 

which should range from -1 to 1. In order to overcome this issue, Chiang and Lin (1999) 

take random sample from the fuzzy sets and treat the membership grades as the crisp 

observations. Their derived coefficient is between -1 and 1; however, the sense the 

fuzziness is gone. Liu and Kao (2002) calculated the fuzzy correlation coefficient based on 

Zadeh’s extension principles. They used a mathematical programming approach to derive 

fuzzy measures based on the classical definition of the correlation coefficient. Their 

derivation is very probable; however, in order to use this scheme, the mathematical 

programming should be required. 

In addition, formulas in these studies are quite complicated or required some 

mathematical programming which really limited the access of some researchers with no 

strong mathematical background. In this thesis, we propose a simple solution of a fuzzy 

correlation coefficient without programming. In addition, the provided solutions are based 

on the classical definition of Pearson correlation which should quite easy and 

straightforward. The definitions provided in this study can also be used for interval-valued 

fuzzy data. 

The remainder of the paper proceeds as follows. The fuzzy interval correlation is 

introduced in section 2. Section 3 presents its results of the relationship of the simulation. 

Section 4 presents its empirical results. Finally, the conclusions are drawn in section 5. 

 

2. Fuzzy Interval Correlation. In general, we need to study the relationship between the 

variables x and y, the most direct and simple way is to draw a scatter plot, which can 

approximately illustrate the relationship between these variables such as positive 

correlation, negative correlation, or non-correlation. Pearson’s correlation coefficient is 

often considered to evaluate that presents a measure of how two random variables  are 

linearly related in a sample. The population correlation coefficient, ρ, is defined for two 

variables x and y by the formula: 

ρ =
σX,Y

σXσY
=

Cov(X, Y)

σXσY
 

where (xi , yi) is the ith pair observation value, i = 1,2,3, . . . , n . x  , y  are sample mean for 

x and y respectively. 

In this case, the more positive ρ is, the more positive the association is. This also 

indicates that when ρ is close to 1, an individual with a high value for one variable will 

likely have a high value for the other, and an individual with a lower value for one variable 

will likely to have a low value for the other. On the other hand, the more negative ρ is , the 

more negative the association is, this also indicate that an individual with a high value for 

one variable will likely have a low value for the other when ρ is close to -1 and conversely. 

When ρ is close to 0, this means there is little linear association between two variables. In 

order to obtain the correlation coefficient, we need to obtain σx2, σy2 and the covariance 

of x and y. In practice, these parameters for the population are unknown or difficult to 

obtain. Thus, we usually use rxy, which can be obtained from a sample, to estimate the 

unknown population parameter. The sample correlation coefficient rxy is expressed as: 
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rxy =
  xi − x   yi − y  n

i=1

   xi − x  2n
i=1    yi − y  2n

i=1

                                             (1) 

Pearson correlation coefficient is a straightforward approach to calculate the 

relationship between two variables. However, if the variables which considered are not real 

numbers, but fuzzy data, the formula above is problematic. For example, Mr. Smith who is 

a new graduate from college expected salary ranges from [45000, 50000] and his expected 

working hours are [8, 10]. If we collect this kind of data from many new graduates, then the 

correlation between expected salary and working hours cannot be calculated by us from this 

data. Suppose IX is the expected salary for each new graduate, IY is the working hours they 

desired, then the scatter plot for these two sets of fuzzy interval numbers would 

approximate that shown in Figure 1. 

 
FIGURE 1. Fuzzy correlation with interval data 

 

For the interval valued fuzzy number, we consider to pick out samples from 

population X and Y. Each fuzzy interval data for the centroids and length of the sample X 

and sample Y will be considered to calculate the correlation coefficient. In addition, we also 

employ the maximum value and minimum value of fuzzy interval data to evaluate the 

correlation coefficient. 

In this paper, there are two kinds of fuzzy correlation which are based on the Person's 

correlation as well as the extension principle Definition 1 and Definition 2, the advantages 

are that we can compute various samples with fuzzy interval type for the continuous 

sample. 

 

Definition 1. 

Let   Xi =  ai , bi , ci , di , Yi =  ei , fi , gi , hi ; i = 1,2, ⋯ , n  be a sequence of paired  

trapezoid fuzzy sample on population Ω with its pair of centroid  (cxi  , cyi) and pair of area

   xi = area xi ,  yi = area yi . 

crxy =
  cxi − cx   cyi − cy  n

i=1

   cxi − cx  2n
i=1    cyi − cy  2n

i=1

 

λarxy = 1 −
ln(1 + |arxy |)

|arxy |
 



68                       YU-TING CHENG1, CHIH-CHING YANG 

arxy =
  | xi | − | x  |  ||yi|| − | y  | n

i=1

   | xi | − | x  | 2n
i=1    ||yi|| − | y  | 2n

i=1

 ,                       (2) 

Then fuzzy correlation is defined as: 

1. When crxy ≥ 0,  λarxy ≥ 0, fuzzy correlation = ( crxy  , min(1, crxy + λarxy )) 

2. When crxy ≥ 0, λarxy < 0, fuzzy correlation = ( crxy − λarxy  , crxy ) 

3. When crxy < 0, λarxy ≥ 0, fuzzy correlation = ( crxy  , crxy + λarxy ) 

4. When crxy < 0, λarxy < 0, fuzzy correlation = ( max −1, crxy − λarxy  , crxy ) 

 

Definition 2. 

Let Xji[a1i  , a2i] and Yji [b1i  , b2i] be a sequence of paired fuzzy sample on population  Ω . 

Let 

rjk =
  aji − aj   bki − bk

    n
i=1

   aji − aj  
2n

i=1
   bki − bk

    
2n

i=1

, 𝑗 = 1,2, 𝑘 = 1,2. 

Then fuzzy correlation is  rlow , rup   wit rlow = r − srh and rup = r + sr  ,where 

r =
  rjk

2
k=1

2
j=1

4
 and sr =

   rjk − r  
22

k=1
2
j=1

4
 

A correlation coefficient is a number between -1 and 1 which measures the degree to 

which two variables are linearly related. If there is perfect linear relationship with positive 

slope between the two variables, we have a correlation coefficient of 1; if there is positive 

correlation, whenever one variable has a high value. Thus, base on the measure of 

evaluation, the degree of the population correlation coefficient, we will be considered for 

the correlation of fuzzy interval. As the correlation of fuzzy interval,   rlow , rup  , is 

computed then the value of fuzzy correlation can be evaluated that is defined as, 

1. When  rlow , rup  ∈ [ −0.10, 0.10 ]n, the fuzzy correlation is not significant.  

2. When  rlow , rup  ∈   −0.39, −0.11   or [0.11, 0.39 ], the fuzzy correlation is low 

value.  

3. When  rlow , rup  ∈ [ −0.69, −0.40 ] or [0.40, 0.69 ], the fuzzy correlation is middle 

value.  

4. When  rlow , rup  ∈ [ −0.99, −0.70 ] or [0.70, 0.99 ], the fuzzy correlation is high 

value.  

 

2.1. Simulation studies. In this section, we will employ the Mote Carlo simulation to 

generate several sequence of fuzzy interval data set and then compare their correlations 

coefficient with different definition as proposed at the section 2. The distribution for the 

centroid and area are generated by the normal, uniform, gamma and Cauchy distribution 

respectively. The procedure to compute correlation coefficient is described below: Table 1 

illustrates the result. 

1. Step 1. Generate fuzzy set of sequence X with successive 4 points and error term 

from the underlying distribution. 

2. Step 2. Let Y = aX + e, calculate the fuzzy data set Y by the fuzzy data set X and 

error term.. 
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3. Step 3. Find the correlation coefficient from the fuzzy data set by above definitions. 

 

Table 1. The fuzzy interval correlation coefficient for various center  

and area model with definition 1 and definition 2. 

a Area center Normal(0,1) Uniform(0,1) Gamma(2,2) Cauchy(0,1) 

0.2 

Normal 
(0.16, 0.20)

1
 

(0.13, 0.18)
2
 

(0.05, 0.09)
1
 

(0.04, 0.08)
2
 

(0.21, 0.25)
1
 

(0.17, 0.22)
2
 

(0.94, 0.98)
1
 

(0.93, 0.94)
2
 

Uniform 
(0.18, 0.21)

1
 

(0.19, 0.22)
2
 

(0.08, 0.12)
1
 

(0.07, 0.09)
2
 

(0.21, 0.25)
1
 

(0.23, 0.25)
2
 

(0.94, 0.98)
1
 

(0.94, 0.95)
2
 

Gamma 
(0.15, 0.19)

1
 

( 0.11, 0.18)
2
 

(0.01, 0.04)
1
 

(0.03, 0.07)
2
 

(0.19, 0.23)
1
 

(0.15, 0.21)
2
 

(0.94, 0.98)
1
 

(0.93, 0.94)
2
 

Cauchy 
(-0.02,0.00)

1
 

(-0.00,0.11)
2
 

(-0.02,0.00)
1
 

(0.00, 0.06)
2
 

(0.00, 0.03)
1
 

(0.00, 0.14)
2
 

(0.33, 0.36)
1
 

(0.30, 0.63)
2
 

0.5 

Normal 
(0.33, 0.38)

1
 

(0.25, 0.39)
2
 

( 0.11, 0.15)
1
 

(0.08, 0.18)
2
 

(0.41, 0.45)
1
 

(0.31, 0.45)
2
 

(0.95, 0.98)
1
 

(0.97, 0.98)
2
 

Uniform 
(0.42, 0.46)

1
 

(0.40, 0.46)
2
 

(0.19, 0.23)
1
 

(0.15, 0.22)
2
 

(0.49, 0.52)
1
 

(0.47, 0.53)
2
 

(0.95, 0.99)
1
 

(0.98, 0.99)
2
 

Gamma 
(0.26, 0.30)

1
 

(0.21, 0.37)
2
 

(0.06, 0.10)
1
 

(0.06, 0.17)
2
 

(0.36, 0.40)
1
 

(0.26, 0.43)
2
 

(0.98, 1.00)
1
 

(0.97, 0.98)
2
 

Cauchy 
(-0.02,0.00)

2
 

(0.00, 0.26)
3
 

(-0.02,0.00)
2
 

(0.00, 0.14)
3
 

(-0.02,0.00)
1
 

(0.00, 0.28)
2
 

(0.34, 0.37)
1
 

(0.30, 0.66)
2
 

0.8 

Normal 
(0.38, 0.42)

1
 

(0.30, 0.50)
2
 

(0.15, 0.19)
1
 

(0.10, 0.26)
2
 

(0.50, 0.53)
1
 

(0.36, 0.56)
2
 

(0.95, 0.99)
1
 

(0.98, 0.99)
2
 

Uniform 
(0.60, 0.64)

1
 

(0.52, 0.62)
2
 

(0.29, 0.33)
1
 

(0.22, 0.32)
2
 

(0.63, 0.67)
1
 

(0.59, 0.68)
2
 

(0.99, 1.00)
1
 

(0.99, 1.00)
2
 

Gamma 
(0.37, 0.41)

1
 

(0.25, 0.48)
2
 

(0.08, 0.12)
1
 

(0.07, 0.24)
2
 

(0.41, 0.44)
1
 

(0.31, 0.54)
2
 

(0.95, 0.99)
1
 

(0.98, 0.99)
2
 

Cauchy 
(0.00, 0.03)

1
 

(0.01, 0.35)
2
 

(-0.03,0.00)
1
 

(-0.00,0.21)
2
 

(-0.02,0.00)
1
 

(0.01, 0.37)
2
 

(0.34, 0.37)
1
 

(0.30, 0.66)
2
 

Note: 1 denotes the result by the definition 1; 2 denotes the result by the definition 2. 

 

In Table 1, there are some results will be described as follows: (1) when a = 0.2, the 

interval of the correlation coefficient is very close. (2) when a =  0.5, the interval of 

correlation coefficient are close except the distribution of Cauchy. (3) when a = 0.8, the 

estimated interval form definition 3 is bigger than the definition 4 did if the center 

distributions come from Gamma, Normal, Uniform. While if the distribution comes from 

Cauchy distribution, we will get a very odd estimation. 

 

2.2. Empirical studies. In general, the transportation engineering will affect the quality of 

air or climate. Hence, the passenger counts of Taipei MRT system could be considered to 

investigate the correlation between passenger counts of Taipei MRT system and air 

pollution, where air pollution include total suspended particles (TSP), air suspended 

particles (ASP), sulfur dioxide (SO2), ozone(O3) , fallout. 
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We examined the passenger counts of the Taipei MRT System and air pollution in 

Taiwan with 170 week samples between January, 1998 and February, 2012. And the form of 

collected data, maximum and minimum observation, will be showed by fuzzy interval data. 

The results show the correlation for the passenger counts and air pollution with two 

approaches of evaluation of correlation coefficient. The results are listed in Table 2. 

 

TABLE 2. Correlations interval based on passenger counts and the air pollution in Taiwan 

Fuzzy 

correlation 
TSP ASP SO2 O3 Fallout 

By definition 1 (-.178, -.142) (.325, .420) (.356, .379) (.370, .425) (-.181, -.153) 

By definition 2 (-.187, -.073) (.273, .335) (.166, .552) (.285, .437) (-.163, -.150) 

 

In the Table 2, we have the following findings. First, besides the correlation of 

passenger counts and the TSP and fallout are low significance negative by schemes of 

definition 1 and definition 2, and this result denotes that the passenger counts of Taipei 

MRT system increase then that can reduce the value of TSP and fallout. Second, the 

correlation coefficient is middle level for passenger counts and the ASP, SO2 and O3 by the 

approach of definition 1, this means the values of ASP, SO2 and O 3 have a lot of effect to 

the passenger counts. Third, the correlation coefficient is low significance for passenger 

counts and the ASP, SO2 and O3 by the approach of definition 2, this means the values of 

ASP, SO2 and O3 have a little effect to the passenger counts, this result show that the 

passenger counts will affect the air pollution, such as the air pollution of ASP, SO2 and O3 

can be affected by the passenger counts of Taipei MRT system. 

 

3. Conclusions. In the progress of the scientific research and analysis, the uncertainty in the 

statistical numerical data is the important point of the problem where the traditional 

mathematical computation is hard to be established. If we achieve this artificial accuracy to 

do causal analysis or measurement, it may lead to the deviation of the causal judgment, the 

misleading of the decision strategy, or the exaggerated difference between the predicted 

result and the actual data. As the pattern of data of interval is occurred in transportation 

engineering or energy environment. Our proposed methods can be applied to make 

management strategy or decision as the two variables illustrate kind of fuzzy interval data. 

In other words, this paper employ a simple approach to derive from fuzzy interval measures 

based on the traditional definition of Pearson correlation coefficient which are easy and 

straightforward. In the formula we provided, when all observations are real numbers, the 

developed model becomes the classical Pearson correlation formula. 

In practice, many applications are fuzzy in nature. We can absolutely ignore the 

fuzziness and make the existing methodology for crisp values. However, this will make the 

researcher over confident with their results. With the methodology developed in this paper, 

a more realistic correlation is obtained, which provides the decision maker with more 

knowledge and confident to make better strategies. 
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