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ABSTRACT. At prime research universities, students study full-time and receive their 
Bachelors’s degree in four years. In contrast, at urban universities, many students study 
only part-time, and take a longer time to graduate. The sooner such a student graduates, 
the sooner will the society start benefiting from his or her newly acquired skills – and the 
sooner the student will start earning more money. It is therefore desirable to incentivize 
students to graduate faster. In the present paper, we propose a first-approximation solution 
to the problem of how to distribute a given amount of resources so as to maximally speed 
up students graduation. 
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1. Formulation of the Practical Problem. 
 
1.1. Fact: Students at Urban Universities often Take Longer to Graduate. At prime 
research universities, students study full-time and receive their Bachelor’s degrees in four 
years. In contrast, at urban universities, many students study only part-time. As a result, 
these students take longer to graduate. 
 
1.2. Speeding up Graduation Is a Win-win Idea. From the viewpoint of the student, the 
sooner he or she graduates, the sooner will his or her salary increase reflecting the newly 
acquired skills. 

From the viewpoint of the society as a whole, the sooner a student graduates, the sooner 
will the society start benefiting from his or her newly acquired skills. In other words, 
speeding up graduation is a win-win idea. 
 
1.3. How Can We Speed up Graduation. Among the main reasons why some students at 
urban universities only study part-time are financial reasons. So, to speed up student 
graduation, it is desirable to provide financial incentives. 
 
1.4. Towards a Corresponding Optimization Problem. In the ideal world, we should be 
able to fully support every student. In real life, however, our resources are limited. So, the 
question is: what is the best way to distribute these resources so that we can maximally 
speed up student graduation – or, equivalently, maximally increase the number of classes n 
that a student takes every semester.This is a problem that we will be solving in this paper. 
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2. Let Us Reformulate the above Practical Problem in Precise Terms. 
 
2.1. Modeling Student's Decisions. In order to solve the above problem, let us first 
formulate it in precise terms. According to the general decision making theory (Fishburn, 
1969; Luce and Raiffasee, 1989; Raiffa, 1997), every agent selects a decision that 
maximizes his or her utility u. So, to understand the student’s behavior, we need to 
understand how this utility u depends on the number n of classes per semester. 

In general, it is reasonable to assume that this dependence u(n) is smooth –even 
analytical, so the dependence can be well approximated by a Taylor 
series ...)( 2

210 +⋅+⋅+= nunuunu . The number of hours n does not differ that much 
between different students, so the range of n is small, and on a small range, a few first 
terms in the Taylor expansion are usually sufficient to reasonably accurately describe the 
dependence. Let us see how many terms we need for our problem. 

The 0-th order term 0u  can be interpreted as a utility of simply being at a university. 
Since this term does not depend on the number of classes n that a student is taking, it does 
not affect the student’s decision. Therefore, we can safely ignore this term and assume that 

00 =u . 
The next term nu ⋅0  represents the gain in knowledge (minus effort) per class. While 

there are minor differences in how much material students learn, in the first approximation, 
it is reasonable to assume that this amount is approximately the same for all the students. 

Since maximizing the function ...)( 1 +⋅= nunu  and maximizing the function ...)(

1

+= n
u
nu  

are equivalent tasks, we can safely assume that 11 =u , i.e., that the linear term has the 
form u(n) = n. 

If we only had this linear term, then the more classes the student would take, the larger 
this student’s utility. In other words, in this approximation, a student would take as many 
classes as there are available. This is clearly not what we observe. This means that in order 
to explain the actual student behavior, it is not sufficient to only consider linear terms in the 
dependence u(n), we need to consider at least the terms of the next order – i.e., quadratic 
terms. Thus, we arrive at the utility expression 2

1)( nunnu ⋅+= . 

If 01 >u , then this expression increases with n and so, we face the same problem as 
before. So, to explain the actual student behavior, we need to assume that 01 <u . In this 

case, the utility function has a clear maximum: when ..,021 1 einu
dn
du

=⋅+=  when 

12
1
u

n = , for each student, we observe the actual number of classes an  that this student 

takes, so we can conclude that for this student, 
an

u
2
1

1 −= and thus, the student’s utility 

function has the form: 
2

2
1)( n
n
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2.2. Modeling Student Population. In the above first approximation model, decisions by 
each student are characterized by a single parameter na – the number of classes that this 
student takes. Thus, to describe a student population, it is sufficient to describe the 
distribution of this parameter. This distribution can be described, e.g., by the probability 

density ρ(n) which is defined, as usual, as the ratio 
n

nnnnP a

∆
∆+≤≤ )(  of the 

proportion )( nnnnP a ∆+≤≤  of students for whom the actual number of classes na is 
between n and n + ∆ and the width ∆n of the corresponding interval [n, n + ∆n]. 
 
2.3. Adding an Incentive. A natural incentive is to give a discount for each course above a 
certain threshold 0n . This incentive adds, to the original utility, a new term )-( 0nnk ⋅ , 
where 0>k  is the per-course value of this discount.  

Once we select a threshold n0, we can determine the per-course discount value b by 
equating the total discount the total amount of offered discounts to the available amount A, 
i.e., from the condition that 

∫ =−⋅⋅
0

.)()( 0n
Adnnnxk ρ

 

From this condition, we can describe the value k as follows: 

∫ −⋅
=

0

)()( 0n
dnnnx

Ak
ρ

 

 
2.4. Decision Making in the Presence of this Incentive. Once we add the incentive, for 

0nn < , we get the same utility as before, but for 0nn > , we get a new utility expression 

)(
2
1)( 0

2 nnkn
n

nnu
a

i −⋅+⋅−=
 

As a result, a student who previously selected an  courses will now optimize a new 
objective function )(aui  and get a new number of courses in . 
 
2.5. Our Objective. We want to select a threshold 0n  in such a way that the average 
increase in the number of courses is the largest possible, i.e., that the value is the largest 
possible. 
 

∫ −⋅
0

))(()(
n aaaia dnnnnnρ  

Now, the problem has been reformulated in precise terms, so we can start solving it. 
 

3. Towards a Solution to the Problem. Differentiating the new utility function )(nui  
with respect to n and equating the derivative to 0, we conclude that for the value in  at 
which this objective function attains its maximum, we get 
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hence .)1( ai nkn ⋅+=  
Thus, aaai nknnn ⋅=−)(  and so, the objective function that we use to select a threshold 

0n  takes the form: 

∫ ⋅
an

ndnnk )(ρ  

Substituting the above expression for k, we conclude that we need to maximize the 
following expression:  

∫
∫
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Dividing the objective function by a constant does not change the value at which this 
function attains its maximum. So, the above maximization problem is equivalent to the 
problem of maximizing the following ratio: 

∫
∫

−⋅

⋅

a

a

n

n

dnnnn

ndnn

)()(

)(

0ρ

ρ
 

Maximizing an expression E is equivalent to minimizing its reciprocal
E
1 . Thus, 

maximizing the above ratio is equivalent to minimizing the reciprocal ratio 
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Here, 

∫∫∫ ⋅−⋅=−⋅
aaa nnn

dnnnndnndnnnn )()()()( 00 ρρρ  

and therefore, the above ratio takes the form 

∫
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Minimizing this expression 1−r is equivalent to maximizing r, i.e., to minimizing the ratio: 

∫
∫
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This minimization, in its turn, is equivalent to maximizing the reciprocal ratio: 

∫
∫ ⋅
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One can easily check that the ratio: 

∫
∫ ⋅

a

a
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is, by definition, equal to the conditional mean of the variable n under the condition that 
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0nn ≥ : 
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Thus, we arrive to the following conclusion. 
 
4. Solution to the Optimization Problem. 
 
4.1. Solution. To maximize the effect of the incentive, we should select a threshold 0n  for 
which the following ratio is the largest possible: 

0

0 ][
n

nnnE ≥
 

 
4.2. Discussion. For distributions with “light” tails – similar to the normal distribution – the 
above ratio decreases with 0n . Thus, for such distributions, to achieve the largest effect, 
we should select the smallest possible threshold 0n . 

For heavy-tailed distributions (Mandelbrot, 1983; Resnick, 2007), for the Pareto 
distribution, when αρ −⋅= nCn)( for all n ≥ N for some small N – the situation is different. 
For example, for the Pareto distribution, the above ratio does not depend on the threshold 

0n ; therefore, to decide which threshold to select, it is not sufficient to use the above first 
approximation: we must consider the next approximation as well. 
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