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ABSTRACT. In this paper, we consider the interval estimation for the quantiles of 
two-parameter exponential distributions. Based on bootstrapping and fiducial inferences, 
two methods for the interval estimation of quantiles are proposed. To evaluate the 
coverage probabilities and expected lengths of the two methods, a simulation study is 
conducted. The results indicate that the fiducial inference method performs well under all 
of the examined conditions. 
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1. Introduction. Two-parameter exponential distribution, which occupies an important 
position in probability and statistical areas, has been widely used in practice, especially in 
the area of reliability. During the past few decades, there are many authors considered the 
statistical inferences for the two-parameter exponential distribution, see Nelson (1982), 
Lawless (1982), Bain and Engelhardt (1991), Balakrishnan and Basu (1995), and Meeker 
and Escobar (1998). It is well known that the quantiles of a random sample are the common 
used indicators to assess the reliability in statistical analysis. However, as the quantiles do 
not depend on nuisance parameters, there is no exact frequency method for interval 
estimation of quantiles. Consequently, there has not been much attempt to the study of the 
inferences on quantiles in recent literatures. 

In some complicated situations, Efron (1979) proposed the bootstrap method for 
statistical inference. Free of population distributions and parameters, the bootstrap theory 
has been greatly developed and expanded for the last three decades, and now this technique 
is wildly used in various fields of statistics, see Hall (1988), DiCiccio and Efron (1996), 
Chen and Tong (2003), etc. Recently, the fiducial inference has attracted a great amount of 
attention due to its advantage of handling the inference problems under certain complex 
situations. Fisher proposed and discussed the fiducial inference firstly in 1935. David and 
Stone (1998) derived a generalized method to conduct the fiducial inference based on the 
function model. More recently, Li et al. (2005) and Hannig et al. (2006) further discussed 
the fiducial theory and developed a general method to construct the fiducial intervals. 

The main work of this paper is to give the interval estimations for quantiles of 
two-parameter exponential distribution based on the bootstrap method and the fiducial 
method. Numerical simulations are conducted to compare the two methods mentioned 
above. 
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2. Interval Estimation of the Quantiles. 
 
2.1. The Two-Parameter Exponential Distribution. Let 
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2.2. The Bootstrap Method. The bootstrap method, proposed by Efron (1979), is often 
used to construct the confidence intervals for parameters. The main thought of the 
bootstrapping is to adopt the empirical probability distribution as a replacement of the 
unknown distribution of underlying population from which the original samples are drawn, 
and then construct new random variables basing on the independently distributed samples 
generated from empirical distribution, which is a substitution of the original samples, for 
further statistical inference. The bootstrap procedure for the calculation of confidence 
interval of the pth quantile is given as follows: 

(1) Calculate the empirical distribution function based on the type II censored 
data

(1) (2) ( )r
X X X   . 

(2) By Monte Carlo simulation method, generate a sample 
1 2
* * *

r
x x x   from 

the empirical distribution with size r randomly. 
(3) Based on the random sample, calculate the UMVUE of 

p
x  by 

p̂
x ˆ ˆ log(1 )p    . 
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(4) Repeat step (2)-(3) for N (=5000) times and get N  corresponding
p̂

x . 

(5) For the given confidence coefficient 1  , sort the 
p̂

x ’s in an ascending order, that 

is, 
(1)p̂

x
(2)p̂

x
( )p̂ N

x  .  

Find their / 2  and 1 / 2  percentiles denoted by 
,p̂ L

x  and 
,p̂ U

x , respectively. 

Then the bootstrap confidence interval of the quantile 
p

x  is [
,p̂ L

x ,
,p̂ U

x ]. 

 
2.3. The Fiducial Method. Let ()P   denote the pdf of the random variable X  with its 
sample space , where   is the unknown parameter in the parameter space . ( )    
is a real-valued parameter function of interest.  
Definition 2.1. Suppose that there exist a random variable E  with known distribution on 
space   and a function ( , )h e  from   to   such that ( , )X h E  for all 
   . Furthermore, if for any observation x    and e   , the equation ( , )x h e  
has a unique solution in  , denoted by ( )

x
e , then the distribution of ( ( ))

x
E   is called 

the fiducial distribution of ( )   . 
In the following, we will give the confidence interval of the quantile 

p
x  using the 

fiducial method. Noted that 
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Consequently, the fiducial distribution of the pth quantile is 
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Hence, for given (0,1)  , the fiducial confidence interval of 
p
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Generally speaking, there exists no explicit expression for the fiducial distribution of 
p

x , 

and it is difficult to find a numerical solution. However, the simulation method would be 
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helpful to conduct the calculation of the fiducial intervals. 
(1) For given data, set the size of the simulated samples N  large enough, say 

5000N  . 
(2) For 1,2, ,i N  , generate 

i
X  and 

i
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3. Simulation Results. This section is devoted to the comparison of the bootstrap method 
and fiducial method using numerical simulation. In general, the mutual comparison of the 
above two methods should take into account the following properties: the coverage 
probabilities (CP) and the expected lengths (EL) of the intervals. The inference procedures 
with larger CP are desired firstly, and then a shorter EL would be considered as the 
indication of more accurate interval estimation.  

In order to evaluate the interval estimation of the above two methods, we here apply 
Monte Carlo simulation to estimate CP and EL. For given   and  , generate M  
samples, compute their bootstrap intervals and fiducial intervals under the nominal level 
1   using the related algorithms put forward in section 2, and finally calculate the 
proportion of the M  intervals containing 

p
x  and the average interval lengths. In the 

simulation procedure, we set 2  , 4  , the sample size 12n  , the number of 
observed censored data 8r  , the confidence coefficient 1 95%   and 3000M  . 
The simulation results are shown in Table 1. 
 

TABLE 1. The simulated CP and EL 

P 
Bootstrap intervals Fiducial intervals 

CP EL CP EL 
0.15 0.7723 1.3698 0.9427 1.8392 
0.25 0.8833 1.8014 0.9407 2.3308 
0.35 0.9217 2.5106 0.9477 3.2295 
0.45 0.9300 3.4505 0.9533 4.3433 
0.50 0.9410 3.9647 0.9553 5.1475 
0.55 0.9447 4.6237 0.9513 5.7954 
0.65 0.9457 6.1248 0.9480 7.4689 
0.75 0.9477 8.2573 0.9527 10.0852 
0.85 0.9447 11.3563 0.9547 14.9056 
0.95 0.9583 18.5748 0.9557 24.8511 
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The numerical results in Table 1 indicate that the CPs of the fiducial intervals are close to 
1  , and apparently larger than that of the bootstrap intervals for small p . Under this 
condition, the fiducial method performs more satisfactorily than the bootstrap method. 
When the value of p is moderately large, the CPs of the two kinds of intervals are close to 
each other. When it comes to the ELs of the confidence intervals, nevertheless, the 
bootstrap method performs better. Therefore, we can conclude that the fiducial method 
would not be affected by the value of p, and the bootstrap method could be well accepted 
only with moderate to large values of p. 
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